3.13 \(\int \frac{1}{\sqrt{b \tan (c+d x)}} \, dx\)

Optimal. Leaf size=192 \[ -\frac{\tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt{b \tan (c+d x)}}{\sqrt{b}}\right )}{\sqrt{2} \sqrt{b} d}+\frac{\tan ^{-1}\left (\frac{\sqrt{2} \sqrt{b \tan (c+d x)}}{\sqrt{b}}+1\right )}{\sqrt{2} \sqrt{b} d}-\frac{\log \left (\sqrt{b} \tan (c+d x)-\sqrt{2} \sqrt{b \tan (c+d x)}+\sqrt{b}\right )}{2 \sqrt{2} \sqrt{b} d}+\frac{\log \left (\sqrt{b} \tan (c+d x)+\sqrt{2} \sqrt{b \tan (c+d x)}+\sqrt{b}\right )}{2 \sqrt{2} \sqrt{b} d} \]

[Out]

-(ArcTan[1 - (Sqrt[2]*Sqrt[b*Tan[c + d*x]])/Sqrt[b]]/(Sqrt[2]*Sqrt[b]*d)) + ArcTan[1 + (Sqrt[2]*Sqrt[b*Tan[c +
 d*x]])/Sqrt[b]]/(Sqrt[2]*Sqrt[b]*d) - Log[Sqrt[b] + Sqrt[b]*Tan[c + d*x] - Sqrt[2]*Sqrt[b*Tan[c + d*x]]]/(2*S
qrt[2]*Sqrt[b]*d) + Log[Sqrt[b] + Sqrt[b]*Tan[c + d*x] + Sqrt[2]*Sqrt[b*Tan[c + d*x]]]/(2*Sqrt[2]*Sqrt[b]*d)

________________________________________________________________________________________

Rubi [A]  time = 0.121426, antiderivative size = 192, normalized size of antiderivative = 1., number of steps used = 11, number of rules used = 8, integrand size = 12, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.667, Rules used = {3476, 329, 211, 1165, 628, 1162, 617, 204} \[ -\frac{\tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt{b \tan (c+d x)}}{\sqrt{b}}\right )}{\sqrt{2} \sqrt{b} d}+\frac{\tan ^{-1}\left (\frac{\sqrt{2} \sqrt{b \tan (c+d x)}}{\sqrt{b}}+1\right )}{\sqrt{2} \sqrt{b} d}-\frac{\log \left (\sqrt{b} \tan (c+d x)-\sqrt{2} \sqrt{b \tan (c+d x)}+\sqrt{b}\right )}{2 \sqrt{2} \sqrt{b} d}+\frac{\log \left (\sqrt{b} \tan (c+d x)+\sqrt{2} \sqrt{b \tan (c+d x)}+\sqrt{b}\right )}{2 \sqrt{2} \sqrt{b} d} \]

Antiderivative was successfully verified.

[In]

Int[1/Sqrt[b*Tan[c + d*x]],x]

[Out]

-(ArcTan[1 - (Sqrt[2]*Sqrt[b*Tan[c + d*x]])/Sqrt[b]]/(Sqrt[2]*Sqrt[b]*d)) + ArcTan[1 + (Sqrt[2]*Sqrt[b*Tan[c +
 d*x]])/Sqrt[b]]/(Sqrt[2]*Sqrt[b]*d) - Log[Sqrt[b] + Sqrt[b]*Tan[c + d*x] - Sqrt[2]*Sqrt[b*Tan[c + d*x]]]/(2*S
qrt[2]*Sqrt[b]*d) + Log[Sqrt[b] + Sqrt[b]*Tan[c + d*x] + Sqrt[2]*Sqrt[b*Tan[c + d*x]]]/(2*Sqrt[2]*Sqrt[b]*d)

Rule 3476

Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[b/d, Subst[Int[x^n/(b^2 + x^2), x], x, b*Tan[c + d
*x]], x] /; FreeQ[{b, c, d, n}, x] &&  !IntegerQ[n]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 211

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]}, Di
st[1/(2*r), Int[(r - s*x^2)/(a + b*x^4), x], x] + Dist[1/(2*r), Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[
{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ, b
]]))

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{1}{\sqrt{b \tan (c+d x)}} \, dx &=\frac{b \operatorname{Subst}\left (\int \frac{1}{\sqrt{x} \left (b^2+x^2\right )} \, dx,x,b \tan (c+d x)\right )}{d}\\ &=\frac{(2 b) \operatorname{Subst}\left (\int \frac{1}{b^2+x^4} \, dx,x,\sqrt{b \tan (c+d x)}\right )}{d}\\ &=\frac{\operatorname{Subst}\left (\int \frac{b-x^2}{b^2+x^4} \, dx,x,\sqrt{b \tan (c+d x)}\right )}{d}+\frac{\operatorname{Subst}\left (\int \frac{b+x^2}{b^2+x^4} \, dx,x,\sqrt{b \tan (c+d x)}\right )}{d}\\ &=\frac{\operatorname{Subst}\left (\int \frac{1}{b-\sqrt{2} \sqrt{b} x+x^2} \, dx,x,\sqrt{b \tan (c+d x)}\right )}{2 d}+\frac{\operatorname{Subst}\left (\int \frac{1}{b+\sqrt{2} \sqrt{b} x+x^2} \, dx,x,\sqrt{b \tan (c+d x)}\right )}{2 d}-\frac{\operatorname{Subst}\left (\int \frac{\sqrt{2} \sqrt{b}+2 x}{-b-\sqrt{2} \sqrt{b} x-x^2} \, dx,x,\sqrt{b \tan (c+d x)}\right )}{2 \sqrt{2} \sqrt{b} d}-\frac{\operatorname{Subst}\left (\int \frac{\sqrt{2} \sqrt{b}-2 x}{-b+\sqrt{2} \sqrt{b} x-x^2} \, dx,x,\sqrt{b \tan (c+d x)}\right )}{2 \sqrt{2} \sqrt{b} d}\\ &=-\frac{\log \left (\sqrt{b}+\sqrt{b} \tan (c+d x)-\sqrt{2} \sqrt{b \tan (c+d x)}\right )}{2 \sqrt{2} \sqrt{b} d}+\frac{\log \left (\sqrt{b}+\sqrt{b} \tan (c+d x)+\sqrt{2} \sqrt{b \tan (c+d x)}\right )}{2 \sqrt{2} \sqrt{b} d}+\frac{\operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1-\frac{\sqrt{2} \sqrt{b \tan (c+d x)}}{\sqrt{b}}\right )}{\sqrt{2} \sqrt{b} d}-\frac{\operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1+\frac{\sqrt{2} \sqrt{b \tan (c+d x)}}{\sqrt{b}}\right )}{\sqrt{2} \sqrt{b} d}\\ &=-\frac{\tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt{b \tan (c+d x)}}{\sqrt{b}}\right )}{\sqrt{2} \sqrt{b} d}+\frac{\tan ^{-1}\left (1+\frac{\sqrt{2} \sqrt{b \tan (c+d x)}}{\sqrt{b}}\right )}{\sqrt{2} \sqrt{b} d}-\frac{\log \left (\sqrt{b}+\sqrt{b} \tan (c+d x)-\sqrt{2} \sqrt{b \tan (c+d x)}\right )}{2 \sqrt{2} \sqrt{b} d}+\frac{\log \left (\sqrt{b}+\sqrt{b} \tan (c+d x)+\sqrt{2} \sqrt{b \tan (c+d x)}\right )}{2 \sqrt{2} \sqrt{b} d}\\ \end{align*}

Mathematica [A]  time = 0.0998046, size = 131, normalized size = 0.68 \[ \frac{\sqrt{\tan (c+d x)} \left (-2 \tan ^{-1}\left (1-\sqrt{2} \sqrt{\tan (c+d x)}\right )+2 \tan ^{-1}\left (\sqrt{2} \sqrt{\tan (c+d x)}+1\right )-\log \left (\tan (c+d x)-\sqrt{2} \sqrt{\tan (c+d x)}+1\right )+\log \left (\tan (c+d x)+\sqrt{2} \sqrt{\tan (c+d x)}+1\right )\right )}{2 \sqrt{2} d \sqrt{b \tan (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/Sqrt[b*Tan[c + d*x]],x]

[Out]

((-2*ArcTan[1 - Sqrt[2]*Sqrt[Tan[c + d*x]]] + 2*ArcTan[1 + Sqrt[2]*Sqrt[Tan[c + d*x]]] - Log[1 - Sqrt[2]*Sqrt[
Tan[c + d*x]] + Tan[c + d*x]] + Log[1 + Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c + d*x]])*Sqrt[Tan[c + d*x]])/(2*Sqr
t[2]*d*Sqrt[b*Tan[c + d*x]])

________________________________________________________________________________________

Maple [A]  time = 0.018, size = 166, normalized size = 0.9 \begin{align*}{\frac{\sqrt{2}}{4\,bd}\sqrt [4]{{b}^{2}}\ln \left ({ \left ( b\tan \left ( dx+c \right ) +\sqrt [4]{{b}^{2}}\sqrt{b\tan \left ( dx+c \right ) }\sqrt{2}+\sqrt{{b}^{2}} \right ) \left ( b\tan \left ( dx+c \right ) -\sqrt [4]{{b}^{2}}\sqrt{b\tan \left ( dx+c \right ) }\sqrt{2}+\sqrt{{b}^{2}} \right ) ^{-1}} \right ) }+{\frac{\sqrt{2}}{2\,bd}\sqrt [4]{{b}^{2}}\arctan \left ({\sqrt{2}\sqrt{b\tan \left ( dx+c \right ) }{\frac{1}{\sqrt [4]{{b}^{2}}}}}+1 \right ) }-{\frac{\sqrt{2}}{2\,bd}\sqrt [4]{{b}^{2}}\arctan \left ( -{\sqrt{2}\sqrt{b\tan \left ( dx+c \right ) }{\frac{1}{\sqrt [4]{{b}^{2}}}}}+1 \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(b*tan(d*x+c))^(1/2),x)

[Out]

1/4/d/b*(b^2)^(1/4)*2^(1/2)*ln((b*tan(d*x+c)+(b^2)^(1/4)*(b*tan(d*x+c))^(1/2)*2^(1/2)+(b^2)^(1/2))/(b*tan(d*x+
c)-(b^2)^(1/4)*(b*tan(d*x+c))^(1/2)*2^(1/2)+(b^2)^(1/2)))+1/2/d/b*(b^2)^(1/4)*2^(1/2)*arctan(2^(1/2)/(b^2)^(1/
4)*(b*tan(d*x+c))^(1/2)+1)-1/2/d/b*(b^2)^(1/4)*2^(1/2)*arctan(-2^(1/2)/(b^2)^(1/4)*(b*tan(d*x+c))^(1/2)+1)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*tan(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 1.67544, size = 1339, normalized size = 6.97 \begin{align*} -\sqrt{2} \left (\frac{1}{b^{2} d^{4}}\right )^{\frac{1}{4}} \arctan \left (-\sqrt{2} b d^{3} \sqrt{\frac{b \sin \left (d x + c\right )}{\cos \left (d x + c\right )}} \left (\frac{1}{b^{2} d^{4}}\right )^{\frac{3}{4}} + \sqrt{2} b d^{3} \sqrt{\frac{b^{2} d^{2} \sqrt{\frac{1}{b^{2} d^{4}}} \cos \left (d x + c\right ) + \sqrt{2} b d \sqrt{\frac{b \sin \left (d x + c\right )}{\cos \left (d x + c\right )}} \left (\frac{1}{b^{2} d^{4}}\right )^{\frac{1}{4}} \cos \left (d x + c\right ) + b \sin \left (d x + c\right )}{\cos \left (d x + c\right )}} \left (\frac{1}{b^{2} d^{4}}\right )^{\frac{3}{4}} - 1\right ) - \sqrt{2} \left (\frac{1}{b^{2} d^{4}}\right )^{\frac{1}{4}} \arctan \left (-\sqrt{2} b d^{3} \sqrt{\frac{b \sin \left (d x + c\right )}{\cos \left (d x + c\right )}} \left (\frac{1}{b^{2} d^{4}}\right )^{\frac{3}{4}} + \sqrt{2} b d^{3} \sqrt{\frac{b^{2} d^{2} \sqrt{\frac{1}{b^{2} d^{4}}} \cos \left (d x + c\right ) - \sqrt{2} b d \sqrt{\frac{b \sin \left (d x + c\right )}{\cos \left (d x + c\right )}} \left (\frac{1}{b^{2} d^{4}}\right )^{\frac{1}{4}} \cos \left (d x + c\right ) + b \sin \left (d x + c\right )}{\cos \left (d x + c\right )}} \left (\frac{1}{b^{2} d^{4}}\right )^{\frac{3}{4}} + 1\right ) + \frac{1}{4} \, \sqrt{2} \left (\frac{1}{b^{2} d^{4}}\right )^{\frac{1}{4}} \log \left (\frac{b^{2} d^{2} \sqrt{\frac{1}{b^{2} d^{4}}} \cos \left (d x + c\right ) + \sqrt{2} b d \sqrt{\frac{b \sin \left (d x + c\right )}{\cos \left (d x + c\right )}} \left (\frac{1}{b^{2} d^{4}}\right )^{\frac{1}{4}} \cos \left (d x + c\right ) + b \sin \left (d x + c\right )}{\cos \left (d x + c\right )}\right ) - \frac{1}{4} \, \sqrt{2} \left (\frac{1}{b^{2} d^{4}}\right )^{\frac{1}{4}} \log \left (\frac{b^{2} d^{2} \sqrt{\frac{1}{b^{2} d^{4}}} \cos \left (d x + c\right ) - \sqrt{2} b d \sqrt{\frac{b \sin \left (d x + c\right )}{\cos \left (d x + c\right )}} \left (\frac{1}{b^{2} d^{4}}\right )^{\frac{1}{4}} \cos \left (d x + c\right ) + b \sin \left (d x + c\right )}{\cos \left (d x + c\right )}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*tan(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

-sqrt(2)*(1/(b^2*d^4))^(1/4)*arctan(-sqrt(2)*b*d^3*sqrt(b*sin(d*x + c)/cos(d*x + c))*(1/(b^2*d^4))^(3/4) + sqr
t(2)*b*d^3*sqrt((b^2*d^2*sqrt(1/(b^2*d^4))*cos(d*x + c) + sqrt(2)*b*d*sqrt(b*sin(d*x + c)/cos(d*x + c))*(1/(b^
2*d^4))^(1/4)*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))*(1/(b^2*d^4))^(3/4) - 1) - sqrt(2)*(1/(b^2*d^4))^(1
/4)*arctan(-sqrt(2)*b*d^3*sqrt(b*sin(d*x + c)/cos(d*x + c))*(1/(b^2*d^4))^(3/4) + sqrt(2)*b*d^3*sqrt((b^2*d^2*
sqrt(1/(b^2*d^4))*cos(d*x + c) - sqrt(2)*b*d*sqrt(b*sin(d*x + c)/cos(d*x + c))*(1/(b^2*d^4))^(1/4)*cos(d*x + c
) + b*sin(d*x + c))/cos(d*x + c))*(1/(b^2*d^4))^(3/4) + 1) + 1/4*sqrt(2)*(1/(b^2*d^4))^(1/4)*log((b^2*d^2*sqrt
(1/(b^2*d^4))*cos(d*x + c) + sqrt(2)*b*d*sqrt(b*sin(d*x + c)/cos(d*x + c))*(1/(b^2*d^4))^(1/4)*cos(d*x + c) +
b*sin(d*x + c))/cos(d*x + c)) - 1/4*sqrt(2)*(1/(b^2*d^4))^(1/4)*log((b^2*d^2*sqrt(1/(b^2*d^4))*cos(d*x + c) -
sqrt(2)*b*d*sqrt(b*sin(d*x + c)/cos(d*x + c))*(1/(b^2*d^4))^(1/4)*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{b \tan{\left (c + d x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*tan(d*x+c))**(1/2),x)

[Out]

Integral(1/sqrt(b*tan(c + d*x)), x)

________________________________________________________________________________________

Giac [A]  time = 2.483, size = 251, normalized size = 1.31 \begin{align*} \frac{1}{4} \, b{\left (\frac{2 \, \sqrt{2} \sqrt{{\left | b \right |}} \arctan \left (\frac{\sqrt{2}{\left (\sqrt{2} \sqrt{{\left | b \right |}} + 2 \, \sqrt{b \tan \left (d x + c\right )}\right )}}{2 \, \sqrt{{\left | b \right |}}}\right )}{b^{2} d} + \frac{2 \, \sqrt{2} \sqrt{{\left | b \right |}} \arctan \left (-\frac{\sqrt{2}{\left (\sqrt{2} \sqrt{{\left | b \right |}} - 2 \, \sqrt{b \tan \left (d x + c\right )}\right )}}{2 \, \sqrt{{\left | b \right |}}}\right )}{b^{2} d} + \frac{\sqrt{2} \sqrt{{\left | b \right |}} \log \left (b \tan \left (d x + c\right ) + \sqrt{2} \sqrt{b \tan \left (d x + c\right )} \sqrt{{\left | b \right |}} +{\left | b \right |}\right )}{b^{2} d} - \frac{\sqrt{2} \sqrt{{\left | b \right |}} \log \left (b \tan \left (d x + c\right ) - \sqrt{2} \sqrt{b \tan \left (d x + c\right )} \sqrt{{\left | b \right |}} +{\left | b \right |}\right )}{b^{2} d}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*tan(d*x+c))^(1/2),x, algorithm="giac")

[Out]

1/4*b*(2*sqrt(2)*sqrt(abs(b))*arctan(1/2*sqrt(2)*(sqrt(2)*sqrt(abs(b)) + 2*sqrt(b*tan(d*x + c)))/sqrt(abs(b)))
/(b^2*d) + 2*sqrt(2)*sqrt(abs(b))*arctan(-1/2*sqrt(2)*(sqrt(2)*sqrt(abs(b)) - 2*sqrt(b*tan(d*x + c)))/sqrt(abs
(b)))/(b^2*d) + sqrt(2)*sqrt(abs(b))*log(b*tan(d*x + c) + sqrt(2)*sqrt(b*tan(d*x + c))*sqrt(abs(b)) + abs(b))/
(b^2*d) - sqrt(2)*sqrt(abs(b))*log(b*tan(d*x + c) - sqrt(2)*sqrt(b*tan(d*x + c))*sqrt(abs(b)) + abs(b))/(b^2*d
))